

AXEDK-1200 智能无功补偿控制器说明书

无功补偿暨谐波治理专业公司,专业的工业企业电能 质量解决方案首选供应商。

三河爱信电气有限公司

微信 公 众 号: "axelc" 或"爱 信 电气"

地址:北京东燕郊经济开发区燕昌路华冠大街 11-2 号

商务: 010-61590852

技术部 1: 010-61599998

技术部 2: 010-61590664

传真: 010-61599998

Email: <u>axelc@163.com</u>

http://www.axelc.com.cn

爱信电气为您提供电能质量的检测、分析、评估和解决方案。

- 1. 提高功率因数,避免用电罚款;
- 2. 节省变压器容量,减少基本电费;
- 3. 提高错峰用电的产能,节约成本;
- 4. 提高设备稳定性,保障用电正常;
- 5. 变压器过载能力提高,有效使用容量提升;
- 6. 降低变压器的温升噪音,确保运行安全可靠;
- 7. 改善电压畸变,排除零线过热导致的安全隐患(火灾,设备短路);

中国●北京

AXEDK系列智能无功补偿控制器画面逻辑结构图

1.1 AXEDK 系列智能无功补偿控制器

主要介绍本控制功能以及操作界面,可根据现场需求自行设置参数。达到最佳

补偿效果;

- 1.1.1 AXEDK 控制器简介
- 1) 型号: AXEDK-1200;
- 2) 电源: AC220V;
- 3) 背部接点定义;

◆采样接法

- 1 三相四线接法(采样三相电压三相电流)
 - 3、4、5分别接 A 相电压、B 相电压、C 相电压; 6 接零线; 7、8 接 A 相电流,
- 9、10 接 B 相电流, 11、12 接 C 相电流。
- 2 两相两线接法(采样两相电压一相电流)
 - 3、6 接线电压; 11、12 接相电流。
- ◆投切输出接法

31-16 分别接 1-16 路控制信号,每路输出直流电流≤50 毫安;15 脚为公共端(有

因为专业 🚺 所以信赖

源输出为+12V,无源输出为16路继电器公共端)。

◆通讯端口

14、13 接 RS-485 的 A、B 端口。

◆供电电源

1、2为220v交流电源。

4) 安装说明;

将智能无功补偿控制器装入装置面板开孔糟内(开孔 138MM×138MM)

正视图

侧视图

面板开孔图

1-1 控制外形尺寸图

5) 技术参数;

电压测量精度	≤ 0.5%
电流测量精度	≤ 2.0%
功率因数测量精度	≤ 1.0%
时间误差	≤1秒/天
电压输入采样范围	0~ 1000V (PT 电压)
电流输入采样范围	0~ 5A (CT 电流)
工作电源	AC 176~265V / 25VA
抗干扰	共模 2500V, 差模 1000V
环境温度	-15°C ~+50°C
相对湿度	≪95% (25℃时)
控制器尺寸	长 138mm 宽 138mm、深 127mm
控制器开孔尺寸	138mm*138mm

6) 控制器设计亮点;

- 通用于低压AC400V/AC800V 所有补偿场合,包括三相平衡或不平衡现场;
- 128*64蓝色LCD液晶屏;
- 三相四线方式,二相二线两种接线方式选择;
- 共分模式,滤波模式,循环模式三种投切方式选择;

因为专业 ••••

- 电压,电流谐波检测功能;
- 过压,欠压,谐波越限等保护功能;
- 16路输出,共分补偿路数自由设置;
- RS485 通讯,采用通用 MODBUS 协议;
- 催款功能;
- 保护和故障诊断;
 - ▶ 能抵抗严重的谐波干扰,不会出现控制电压误判并引起误动作。
 - 具有动态自检功能,控制器内部控制参数出错以及非严重性故障 均可报警并闭锁。
 - 当出现电网电压过高或过低时,自动切除电容后报警并闭锁,故 障消失后可自动恢复工作。
- 显示功能;
 - ▶ 可分别显示网线的电压、电流、功率因数、无功功率、有功功率、 谐波。
 - ▶ 显示控制器控制方式、电容器运行状态和可投入运行的电容器组。
 - ▶ 显示各电容组的通断状态。
 - ▶ 屏幕电容显示位置可任意定义。
 - 出现异常情况时,能明确提示故障名称,不用临时查找说明书, 以便及时处理故障;
- 安装维护方便;
 - 系统测试功能可现场观测所有外部接入信号和通断输出接点,方
 便快速地安装调试;
 - 增益调节功能可使维护人员在控制器面板上用按键直接修正显示 精度。
 - ▶ 通用的电路板和模块化设计,进出口端子输出,先进的可编程序 器件易于维护升级。
- 手动投切电容功能;

控制器具有齐全的电容手动投切功能。

- 可配合控制屏的手动投切按钮, 以备装置定检时临时使用;
- 事件记录;
 - > 各组电容的投入、切除动作以及日期、时间。
 - > 可记录多个事件,记录的内容不受停电影响,便于追忆运行和故

因为专业 🚺 原以信赖

障情况

▶ 各种异常报警事件以及日期、时间。

7) 基本操作;

为降低功耗,当控制器 5 分钟内无操作,控制器显示界面进入屏保状态(关闭背光),再次点击按键时,打开背光,屏幕亮起。

8) 控制器界面图列;

1	
	工作状态
	诸波分析
	LEFT RIGHT OK BACK

1-2 控制器界面

【开机与启动】界面

按照使用手册的接线说明正确接线后,启动电源后首先是开机画面,显

示系统硬件和软件的版本等信息。

让我们的客户充分享受高可靠性、高科技的装备

1-3 开机界面

【主 界 面】功能说明

主界面有 5 个功能项,分别是实时数据、参数设置、谐波分析、工作状态和时间设置。

按键说明;

1-4 主界面

按	[LEFT 键]	向上选择菜单项
键	[RIGHT 键]	向下选择菜单项
明	[OK 键]	进入所选功能界面

【实时数据】功能说明

实时数据显示系统的基本数据。

1-5 系统电压.电流

1-6 系统有功.无功

1-7 系统视在功率.功率因数

按	[LEFT 键]	向左翻页
键	[RIGHT 键]	向右翻页
└────────────────────────────────────	因为专业	所以信赖
让我们的	的客户充分享受	受高可靠性、高科技的装备

输入密码进入。(注意:参数默认密码为 0001)

1-8 进入参数设置界面

输入密码按键操作;

按	[LEFT 键]	循环对所选数字进行加1
键	[RIGHT 键]	循环选择每位数字
说	[OK 键]	进入所选参数设置选择界面
明	[BACK 键]	返回主菜单

1-9 参数选择界面

参数选择按键操作;(注意:具体参数列表及其含义注释见本操作手册【附录 A 参数列表及 说明】)

按	[LEFT 键]	选择上一项功能菜单
键	[RIGHT 键]	选择下一项功能菜单
说	[OK 键]	进入所选界面
明	[BACK 键]	返回主菜单

1-10 基本参数设置界面

让我们的客户充分享受高可靠性、高科技的装备

1-11 基本参数修改界面

基本参数界面按键操作;

	[LEFT 键]	在查看状态可以移动到上一个参数;在修改状态将参数值减1
按	[RIGHT 键]	在查看状态可以移动到下一个参数;在修改状态将参数值加1
键 说	[OK 键]	在查看状态按下[OK 键]弹出修改对话框进入修改状态;在修改对话框中按下[OK]会保存修改过的参数返回到查看状态;
明	[BACK 键]	在查看状态将返回到参数设置选择界面;在修改状态将返回 到查看状态。

注意:如果修改数据时,数据位不能增加或者减少,则表示参数数据位增加或者减 少后将超出参数范围。

1-12 投切模式选择界面

投切模式界面按键操作;

	[LEFT 键]	选中上一个模式
按 键	[RIGHT 键]	选中下一个模式
说	[OK 键]	在查看状态按下[OK 键]弹出修改对话框进入修改状态;在修改对话框中按下[OK]会保存修改过的参数返回到查看状态;
明	[BACK 键]	选定当前工作模式,选定模式后相应模式将出现√号。

因为专业 新以信赖 让我们的客户充分享受高可靠性、高科技的装备

【谐波分析】功能说明

显示系统谐波详细数据。

1-13 谐波分析-选择界面

1-14 电压谐波分析界面

1-15 电流谐波分析界面

谐波分析选择按键操作;

	[LEFT 键]	选择电压谐波界面
按 键	[RIGHT 键]	选择电流谐波界面
说	[OK 键]	进入所选界面
明	[BACK 键]	返回主菜单

【工作状态】功能说明

显示系统的电容投切状态。

1-16 投切方式选择界面

1-17 自动投切状态

注意:在此页面内,当 AUTO 切换 HAND 工作模式时,将会一次性切除所有电容组, 并等待手动投入;当 HAND 切换 AUTO 工作模式时,将会一次性切除所有手动投入电容, 并开始自动工作模式。

1-18 手动投切状态

手动扮	と切按键操作;	(注意:	未使用电容	(或者故障电容)	将不能执行投切动作。
	5 http:	いや キマー	四中中南		

	[LEFT 键]	选择上一路电容
按	[RIGHT 键]	选择下一路电容
键		因为专业 「所以信赖

[OK 键]	对所选电容进行投/切操作
[BACK 键]	返回投切方式选择界面

【时间设置】功能说明

显示系统当前的时间。

1-19时间设置-查看状态

1-20 时间设置-查看状态

时间设置按键操作;						
	[LEFT 键]	在查看状态可以移动到上一个参数;在修改状态将参数值加				
按 键 说 明		1.				
	[RIGHT 键]	在查看状态可以移动到下一个参数;在修改状态将参数值减				
		1.				
	[OK 键]	在查看状态按下[OK 键]进入修改状态;在修改对话框中按下				
		[OK]会保存修改后的时间值。				

[BACK 键]	在查看状态将返回到主菜单界面;	在修改状态将返回到查看
	状态。	

【催款功能】功能说明

催款功能可设置系统能够运行的最大时间,设置完成后开始倒计时,等时间到来需要重新设置才能运行,设置为 9999 时表示无限制。在主菜单界面按下[OK]和[BACK]可调出催款界面。

注:操作方法同参数设置界面操作。

1-21 催款功能-输入密码

1-22 催款功能-查看状态

1-23 催款功能-修改状态

爱信电气

附表 A; AXEDK-1200 参数含义解释

参数	含义	取值范围	备注
СТ	电流变比	1-9999	电流互感器变比,例如电流互感器变比
			为 1000A:5A, CT 设置为 200。默认值=40
PT1	一次回路电压等	100V-1200V	电网电压等级(线电压),如果控制器
	级		电压采样端与电网之间有变压器转换
			的话为变压器一次回路电压,没有的话
			为电网电压。
PT2	二次回路电压等	100V-800V	控制器采样端电压等级(线电压),如
	级		果控制器电压采样端与电网之间有变
			压器转换的话为变压器二次回路电压,
			没有的话为电网电压。
UL	电压下限	0-100%	欠压点,控制器电压基准为 PT 设定值
			(线电压),当电网电压与电压基准的
			比值百分比低于此值时报警并切除所
			有已投电容直至报警解除.
UH	电压上限	0-200%	过压点,控制器电压基准为 PT 设定值
			(线电压),当电网电压与电压基准的
			比值百分比当电网电压高于上限时控
			制器切除所有已投电容.
HV	谐波越限保护	0-99%	电压谐波总畸变率上限,当电网含谐波
			超过门限时报警并切除所有已投电容
			直至报警解除。
CSL	目标功率因数下	0.85L-1.00-0.85C	补偿目标, 当系统功率因数补偿到上限
	限		与下限之间时无论系统所缺无功多少
			不再进行投切动作. 当低于下限时进行
6611			投动作,高于上限时进行切动作.如果
CSH	目标切率因数上	0.85L-1.00-0.85C	上限和下限为同一个值, 可视为只有一
	限		个目标功率因数. 下限的设定值不能高
			于上限. <u>单位 L 表示感性, C 表示容性。</u>
			<u>容性值大于感性值</u> 。默认值=1.00
TD	投切延时	(1-9999)*20ms	投切的延时时间,以20ms为基准单位,
			实际投切延时为设定值×20ms。例如设
			定为10时,投切延时为
			10×20ms=200ms。默认值=1
MT	电容回差	0.5-1.0	例如 MT=0.8 表示某路所设容值为
			100Kvar,系统把此路电容当作
			100Kvar×0.8=80Kvar 进行操作. 单位 C
			表示实际电容值。默认值=1.0.(此参数
			一般只针对一路, 主要针对系统选择最
			[佳投切组合的最后一路,属于精补参
			数)

表:参数含义解释

让我们的客户充分享受高可靠性、高科技的装备

<u>所以信赖</u>

因为专业

QT	投入无功	0-999	当系统总无功缺额超过设定值时执行
			投入电容动作
QQ	切除无功	-999-0	当系统总无功缺额小于设定值时执行
			切除电容动作
BT	波特率	1200-9600bps	与上位机通讯的传输速率, <u>与上位机保</u>
			<u>持一致</u> 。默认值=9600
ID	机器地址	1-99	由上位机寻址的唯一确认编号, <u>同一网</u>
			内终端控制器不能设置相同编号。默认
			值=0
SY	接线方式	0-1	采样接线方式:0为三相四线接法,即
			采样三相电压三相电流。1 为两相两线
			接法,即采样两相电压一相电流
LUG	共补电容数	0-16	受投切模式限制,
			a)共分模式时:共补电容组数,有公式
			(LUG+LUF*3)<=16, <u>此值受 LUG 影响</u> 。
			b)滤波/循环模式时:不可更改。
LUF	分补电容数	0-5	受投切模式限制,
			a)循环模式时:分补电容组数,有公式
			(LUG+LUF*3)<=16, <u>此值受 LUF 影响</u> 。
			b)滤波/循环模式时:不可更改。
C01-C16	电容值	0-999	实际投入电网容值

注意:控制器内部参数一般按照技术协议而定,如需更改请与本公司技术部联系。

- 1. 控制器可以选择三种投切模式,分别为:滤波模式,循环模式和共分模式。
- 在滤波模式下电容投切按先投后切顺序进行。在循环模式下电容投切按先投 先切顺序进行,控制器根据系统所缺总无功对电容进行筛选组合补偿。共分 模式下电容投切先共相补偿,然后根据每一相电路所缺无功进行分相精补, 对于相同容值电容也是按循环模式投切,补偿为一次补偿到位。
- 3. 模式选择操作:首先进入投切模式选择界面,里面有三种投切模式项,左边 箭头指示当前可进行操作的模式,右边的对号表明当前选定的模式。首先将 箭头指向要选择的投切模式,然后按确定键进行选定,选定后在模式后面出 现一个对号表明已经选中为此种模式。然后退出投切模式页面,进入基本参 数页面设定 LUG 和 LUF。最后进入容值设定页面对每一路电容容值进行设定 分配。
- 4. 模式详解及端子分配

循环模式下系统固定为 16 路,不能对两个路数设定项进行操作,在使用 过程中如果有多余的路数用不到,可以将此路电容容值设为 0 即封锁此路不 再进行投切操作。

滤波模式可设定滤波回路和精补回路,滤波回路投切按先投后切顺序进 行,精补回路控制器可根据现场所缺无功灵活进行投入和切除。次模式需设 定参数 LUG 和 LUF,LUG 为滤波路数,所占用端子路数为设定值,在端子分配 上占用 K1 到 Kn(n 为所设定共相路数),设定值在 1-(16-LUF)之间。LUF 为精 补路数,所占用端子路数为设定值,在端子分配上紧跟滤波所占端子后,设 定值在 0-(16-LUG)之间。例如:假如 LUG 设定 10,LUF 设定 6,具体的端子 分配为,K1-K10 为滤波回路,K11-K16 为精补回路。

如果选择共分模式的话也需要设定参数 LUG 和 LUF,LUG 为共相路数,所

占用端子路数为设定值,在端子分配上占用 K1 到 Kn(n 为所设定共相路数), 设定值在 1-(16-LUF×3)之间。LUF 为分相路数,所占用端子路数为设定值 ×3,在端子分配上紧跟共相所占端子后,先分配 A 相,然后为 B 相,然后 C 相,设定值在 1-(16-LUG)/3 之间。例如:假如共相设定 10,分相设定 2, 具体的端子分配为,K1-K10 为共相,K11,K12 为 A 相的 1,2 路,K13,K14 为 B 相的 1,2 路,K15,K16 为 C 相的 1,2 路。

如果您有关于 AXEDK 智能无功补偿控制器的任何需求,请与我们联系,我们将非常乐意地为您提供高质量的专业服务。

K[®]三河爱信电气有限公司 Sanhe Aixin Electric Co., Ltd

地址:中国.北京.燕郊高新技术开发区燕昌路华冠大街 11-2号

- 邮编: 101601
- 电话: +86 010 61590664 61590852
- 传真: +86 010 61599998
- 网址: http://www.axelc.com.cn
- 邮箱: axelc@163.com

本说明书所载述的产品资料以实物 为准,若有变更恕不另行通知,三河 爱信拥有最终解释权。